-4x^2-4x=(x-5)(-5x-3)

Simple and best practice solution for -4x^2-4x=(x-5)(-5x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4x^2-4x=(x-5)(-5x-3) equation:



-4x^2-4x=(x-5)(-5x-3)
We move all terms to the left:
-4x^2-4x-((x-5)(-5x-3))=0
We multiply parentheses ..
-4x^2-((-5x^2-3x+25x+15))-4x=0
We calculate terms in parentheses: -((-5x^2-3x+25x+15)), so:
(-5x^2-3x+25x+15)
We get rid of parentheses
-5x^2-3x+25x+15
We add all the numbers together, and all the variables
-5x^2+22x+15
Back to the equation:
-(-5x^2+22x+15)
We get rid of parentheses
-4x^2+5x^2-22x-4x-15=0
We add all the numbers together, and all the variables
x^2-26x-15=0
a = 1; b = -26; c = -15;
Δ = b2-4ac
Δ = -262-4·1·(-15)
Δ = 736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{736}=\sqrt{16*46}=\sqrt{16}*\sqrt{46}=4\sqrt{46}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-4\sqrt{46}}{2*1}=\frac{26-4\sqrt{46}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+4\sqrt{46}}{2*1}=\frac{26+4\sqrt{46}}{2} $

See similar equations:

| 5x=3=2x-15 | | 5+3x-2(x-1)=1 | | 49x^2+28x-24=38x^2-4x | | 9x^2+6x+16=14x^2+19x+6 | | 0.3625=x+(1.625)*(x-0.10) | | 49x²-28x-24=38x^2-4x | | 4y-13=33 | | (7x-12)^2=(2x)(19x-2) | | 25x^2+20x+1=(x+2)(x+11) | | y=-X^3+2X^2+11X-2 | | 4x-3×5x-3=3x-1×8×-7 | | 2x-3=7.5 | | 2x-3=7×5 | | 3x-4+5x-9=3 | | 2x=0-4 | | (18x-45)-(70-50x)=28x | | 3(x+5)-4=5 | | 3(2x-5)/4-5(7-5x)/6=7x/3 | | 2c=32 | | 201√21x=2 | | 15+d=6 | | 5x/4+3/4-2x/3-4/3=5 | | A=24h-9h^2 | | 5x+3/4-2x-4/3=5 | | 12(p-4)=4(p+12) | | 10+x+25+x=740 | | 10+x+25+x+50=740 | | 1/2x+6-5x=18 | | 2(2p+3)-5=25 | | 8(2x-1)=10 | | 3y-×=9 | | 2m+11÷4=3m+2 |

Equations solver categories